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Explicit Modeling of Personal Space for Improved Local

Dynamics in Simulated Crowds
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Crowd simulation demands careful consideration in regard to the classic trade-off between accuracy and

efficiency. Particle-based methods have seen success in various applications in architecture, military, urban

planning, and entertainment. This method focuses on local dynamics of individuals in large crowds, with a

focus on serious games and entertainment. The technique uses an area-based penalty force that captures the

infringement of each entity’s personal space. This method does not need a costly nearest-neighbor search

and allows for an inherently data-parallel implementation capable of simulating thousands of entities at

interactive frame rates. The algorithm reproduces personal space compression around motion barriers for

moving crowds and around points of interest for static crowds.
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1 INTRODUCTION

Real-time simulation of dense crowds is finding increased use in the context of event planning, con-
gestion prediction, and threat assessment. Crowd simulation algorithms have also been used in the
entertainment and serious gaming industries. Existing particle-based methods assume and aim for
collision-free trajectories. This is an ideal—yet not overly realistic—expectation, as near-collisions
increase in dense and rushed settings compared with typically sparse pedestrian scenarios.
While theoretical accuracy is desired for planning complex emergency scenarios, the goals of

our research favor other objectives: visual believability, a certain degree of artistic control, and fluid
simulated scenarios. In cases of high density and near hot spots of interest, handling personal space
can become a major issue to deal with. The compression of personal space is accumulative; the
barriers then create the conditions for exceeding the critical crowd densities. The objective is to
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Fig. 1. Crowd abstraction hierarchy.

define a simple mechanism to obtain advanced close interaction simulations that improve existing
methods to deal with close-range collision avoidance and personal space management.
This research assumes a hierarchy that divides the crowd modeling and simulation process into

three levels: cognitive, global path computation, and local interaction, as illustrated in Figure 1.
The cognitive model focuses on broad decision-making, such as deciding where the target lo-

cation is, and interacting with entity goals and personality traits that could alter such decisions
(e.g., taking the stairs instead of the elevator, or following a parent during an evacuation instead of
taking the nearest exit). Once the target location is decided, the global path is computed based on
the spatial structure of the mostly static environment and finds an optimal path according to some
cost function (typically, a short path or a least congested one). Finally, the local interaction module
further modifies the path to navigate around and avoid collision with minor dynamic obstacles:
other pedestrians, gates, and doorways (generally following the optimal path and not straying too
far from it). This hierarchy encourages separation of concerns and allows further experimenta-
tion and mixing of components and solutions from various sources. Our contribution focuses on

improved local dynamics in the modeling of personal space; we model personal space explicitly and

obtain specific emergent behavior that other methods cannot reproduce easily. This specific type of

emergent behavior does not need to be programmed explicitly. The method we propose, called the
Centroidal Particle Dynamics method (CPD), adds anticipatory collision avoidance and can offload
CPU workload to graphics cards for increased performance and higher frame rates.
CPD uses an area-based penalty force that allowed us to obtain good results using consumer-

grade graphics hardware. The model produces specific emergent behavior found in known crowd

phenomena (in particular, lane formation in bidirectional flow, regular banding around areas of
congestion, petal formation in crowds, stop-and-go behavior, concentration around points of at-
tention, collision avoidance) without the need for introducing specific rules in the model to achieve
any of those specific behaviors. In addition, still compression effects can be found (i.e., accumu-
lative reduction of personal space near areas of high congestion and around points of interest).
CPD can generate these varied behaviors with ease as well as static/near-static crowds. In these
cases, previous methods that rely on relative velocities between entities have failed (as they have
a difficult time distinguishing between static entities at varying distances from a barrier or an
area of collective interest). For instance, Figure 2 shows how the area-based force of CPD can ag-
gregate such compression of personal space in high-density stationary crowds without defining
such behavior explicitly. Furthermore, the area force is customizable through graphical parameters
that are designer friendly for creative control and for the introduction of non-homogeneity into
the system. This local interaction force can be integrated with existing global pathing schemes or
used to augment the calculations of other local avoidance methods.
We will discuss our contribution to the development of microscopic methods catered to

dense crowd phenomena. We conducted qualitative analysis with real-world data (due to our
objectives stated earlier, quantitative analysis is outside the scope of this research). The method

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 4, Article 23. Publication date: July 2021.



Explicit Modeling of Personal Space for Improved Local Dynamics in Simulated Crowds 23:3

Fig. 2. An “invisible force”: gradual compression of personal space among a static crowd near areas of interest
or barriers to desired motion. Marathon start line (top); simulated result (bottom).

has potential for real-world emergency scenarios or large crowd models in urban environments
although a thorough quantitative analysis should be conducted before its applicability in these
cases. Similarly, the hierarchical organization of crowd abstraction presented in Figure 1 allows
integration with path planning and cognitive models. We will show how CPD improves the
quality of individual interactions. Another aspect is the specific emergent behavior found in
the execution of the method under different conditions: lane formation in bidirectional flows,
compression of space in congested areas, petal formation, and other patterns in stationary crowds,
without explicitly programming any of these specific behaviors.
The relevant background is discussed in Section 2. Section 3 presents our proposed method.

Section 4 illustrates our method’s results and real-time performance. The discussion in Section 5
reflects on themethod’s limitations and hosts opportunities for further discussion and future work.
We discuss the relevant background next, followed by a geometric description of our proposed
method and a discretized graphics pipeline implementation. Lastly, we highlight some key results
before briefly discussing opportunities for improvement, including thoughts on the conversion
from a discrete-time evaluation to a more efficient discrete-event model.

2 BACKGROUND

Human motion is seemingly non-deterministic; hence, pedestrian simulation will always be an
exercise in abstraction. Modeling and Simulation (M&S) of human behavior and decision-making
is one of the most complex in M&S—crowds are no exception. Dense crowd M&S focuses on pre-
dicting the motion of large groups of humans within a limited physical space. The abstraction
of motion dynamics based on the generalization of observed phenomena is necessary to obtain
computable results [8, 18]. This section presents a brief overview of the multitude of methods
developed to tackle this problem.
Early efforts to simulate crowd motion took a macroscopic approach and viewed the crowd as

a continuous fluid-like field. The behavior was generated using finite element solvers to evolve
aggregate density and velocity fields in time [19]. Later versions showed stop-and-go waves and
bottleneck clogging [55]; methods such as Continuum Crowds [53] delivered large-scale results at
interactive frame rates, suitable for animation, gaming, or training. Other macroscopic methods
took an operational research approach: they adapted network optimization techniques to sim-
ulate occupant movement within a predefined multi-compartment environment [21, 52] where
each graph node represented a building section and links represented the capacity of pedestrian
nodes. Using optimization, designers focused on areas of potential bottlenecks. Overall, macro-
scopic methods remain popular due to their computational efficiency and their ability to provide
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insight into aggregate crowd dynamics, especially for large-scale scenes with high crowd counts
[8].

Unlike macroscopic methods, microscopic methods simulate entities as individual agents with
localized rulesets whose emergent global behavior resembles reality. Some of the earliest examples
include Cellular Automata (CA) and Lattice Boltzmann (LBM) models [1, 2]. In CA, a space is
discretized into a uniform lattice of tillable shapes that form a consistent neighborhood pattern.
A global clock triggers a simultaneous update of all cells, where the next state of each cell is
determined by the state of the cells in its neighborhood [57]. Cell-DEVS provides a discrete-event
parallel modeling and simulation approach to solving microscopic pedestrian flow problems [12].

Eulerian evaluation with discretized stepping and finite directions of motion cannot faithfully
reflect the fluidity and details of human motion. Lagrangian methods, typically implemented as
free-moving particles, perform their computations in-place. Successful efforts were introduced by
Helbing’s social forces [14], or HiDAC, which incorporates psychological profiles and pushing
[34]. When taken to an extreme, microscopic algorithms could opt to simulate the joints of every
entity (e.g., legs on a human or pedals on a bike) to generate mechanically accurate locomotion [5].
A key element of Lagrangian methods is neighborhood detection every time advance, which is the
primary cost when compared with Eulerian evaluation, in which neighborhoods are predefined
and accessible. Certain data structures can be used to accelerate this stage, primarily involving a
spatial tessellation such as an Octree or a Voronoi diagram, which is used to limit the search area
and can accelerate neighborhood detection using GPUs [42, 43].

Human motion is empirically shown to be anticipatory [37, 38]: we scan the environment for
potential collisions and enact local maneuvers to avoid them. Agent-based models were built on
this principle—including Reciprocal Velocity Obstacle (RVO) [3], ORCA [50], or learning agent
models [25, 26]—in particular, those that can use live crowd data to adjust their behavior in real
time [27]. Other efforts try to mimic vision-to-motion by rendering a one-dimensional (1D) [29]
or two-dimensional (2D) [33] depth map from each entity’s perspective and emulating how we
adjust trajectories based on parallax and depth perception.
Our research introduces a new method based on the physiological origins of personal space,

which arises primarily from two factors:

—Biological: When a person crosses the boundaries of personal space, the amygdala (an area
in the brain) stimulates the sympathetic nervous system, provoking fight or flight behav-
ior. This results in personal space, which is a mechanism that helps keep people safe from
danger and gives them time to react in case of danger. This applies to strangers not close to
the person (people with brain damage or defects in the amygdala have difficulty discerning
appropriate personal space).

—Social: Personal space is also called the safe zone, a specific area around a person that, if
breached, results in an uncomfortable feeling. The safe zone varies per the individual and the
society in which the individual lives. When in crowds, we are not as uncomfortable around
each other, as we handle the situation by temporarily dehumanizing people around us [51]
until we spot an escape route [13]. These personal space bubbles start forming between the
ages of 3 and 4 years and they have a fixed size around adolescence. Bubbles are socially
and culturally constructed, and they are combined with the fear triggered by the amygdala.

We proposed the Centroidal Particles approach [15, 16], a new Lagrangian approach for realistic
depiction of personal space compression in congested settings, which is based on the two ideas just
discussed: the social (safe zone) and biological (fight or flight) personal spaces. The methods try
to reconstruct this basic human behavior for individuals and combine thousands of individuals,
generating scenarios in which behavior emerges. The application target is in film, gaming, and
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training applications. Although safety-critical applications such as civil planning, crowd control,
and large-scale event threat assessment could benefit from a dense-crowd simulation method such
as ours, we do not yet endorse the use of CPD, as further analysis is required for those applications.
Other state-of-the-art methods that share our target applications include WarpDriver [59], ORCA
[50], RVO [3], Social Forces [14], and position-based [54] crowds. Microscopic methods typically
excel in sparse-crowd simulation. RVO and ORCA have enjoyed success in real-time multime-
dia/gaming engines. However, they struggle to reproduce convincing trajectories, particularly in

dense bidirectional flow scenarios, due to emergent lane rigidity or artificial congestion. One of the
causes is a rigid 1D separation distance between entities. In contrast, CPD uses a compressible
2D area. To tackle dense crowds, one approach is to model aggregates of local crowd flow instead
of the trajectories of individual entities [31]. While this approach allows for real-time simulation
of thousands of entities at interactive frame rates, it can create the appearance of overly coordi-
nated motion among local pockets of the crowd. Other approaches include energy minimization
to reduce the effort cost over a given pedestrian’s entire trajectory, short-range stochastic motion-
prediction based on prior collision experiences [28], and position-based dynamics that adapt ex-
isting fluid and soft-body physics solvers for use in crowd simulation [50]. Implicit Crowds is a
particularly interesting recent development that allows for smooth trajectories using much larger
timesteps than is required from typical numerically simulated crowds [20]. An important difference
between this state-of-the-art method and CPD is that we are not explicitly querying the neighbor-
hood of each pedestrian (including its basic force parameters, direction vectors, distance between
pedestrians), and combine them to compute the final force acting on a pedestrian. Each neighbor
must be queried. Instead, we use a rendering algorithm to compute individual kernels for each
pedestrian (which can run in parallel—for instance, using GPUs, as in our proposed implementa-
tion). Another important difference with current research is that obstacles are also computed in
the same visual space: when we compute personal space, we no longer must worry if the space
is reduced because of an obstacle or a person: the computation is agnostic as to why the space is
reduced. In recent years, different authors proposed methods for quantitative evaluation for study-
ing the fidelity of crowd models. As explained earlier, this evaluation is outside the scope of this
research, as our current objective is to obtain realistic visual results and complex emerging behav-
ior matching real scenarios for animation and training. Applying our research to real-world crowd
management scenarios would require exhaustive validationwith quantitative studies. For instance,
ProactiveCrowd [24] provides a method and tool to compare trajectory similarity between agents
and human data adopting the Longest Common Subsequencemetric. Similarly,Wolinsky et al. [60]
define an evaluation framework for parameter estimation, although the scope of their study is not
sufficient for our case studies. They use around 150 agents and we are interested in experiments
on specific emergent behavior in close-range interaction with a minimum of 2,000 agents and up
to over 100,000 agents, as shown in Section 4. The Fundamental Diagram [30], which focuses on
density and collisions, would provide metrics on the average frame computation; nevertheless,
the authors do not discuss how they conduct real-world validation (they validate three reproduc-
tions on live pedestrians, using the same dataset we have used for Section 5). The work in [56]
introduces a new semantic-level crowd evaluation metric, which can be used to analyze quanti-
tative results. The method can be used to study path planning. This method is not useful for our
person-to-person interactions in dense crowds. As discussed in Figure 1, we count on a high-level
path planning method such as the one presented and evaluated quantitatively in [56], which in-
troduces the idea of a trending path. Their quantitative analysis focuses on discovering latent path
patterns. They state that their “. . .method does not directly measure individual trajectories thus
does not reflect individual visual similarities,” which is the main objective of CPD. An integra-
tion of the CPD and a path planning method such as the one in [56], with detailed quantitative
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analysis for the overall path planning and interaction, is an interesting research topic for future
investigation.
According to the established wisdom in crowd M&S literature (extensively surveyed in [47]),

different metrics from those discussed earlier, when pursued and measured properly, would im-
prove the confidence in using our proposed CPD algorithm. However, the very concept of data
validation in the context of crowd simulation is not without its criticism. The fire safety literature
[41] brings attention to the absence of an international standard for verification and validation
of evacuation models and that “validity” is still ambiguous and can have different meanings and
rigor for different experts. They argue that the problem is further compounded by the M&S lit-
erature’s tendency to “validate” against data “outside their original context of use” (e.g., building
evacuation data used to validate ship or stadium evacuation). Another critique comes from the
field of neurocomputing, which argues that collision avoidance methods should take macroscopic
statistical “truths” into account when deriving microscopic models: instead of calibrating abstract
model parameters and “hoping” to validate the model by achieving certain macroscopic properties
that match the statistical data, it is argued that those learned macroscopic truths should be known
to the microscopic model beforehand, thus, guaranteeing the desired emergent macroscopic prop-
erties. This is a bit too restrictive, in our view, and it encourages a model that departs from the
way that actual pedestrians process their surrounding stimuli and make collision-avoidance deci-
sions locally. Their recommended approach means that each virtual pedestrian would have more
knowledge about the surrounding aggregate dynamics than the real pedestrian entity it supposedly
models.
Our primary application target requires the simulation to perform at real-time (simulation time

advances at least as fast as wall clock time) or at interactive frame rates (10 fps, as user interaction
experiments in the context of software usability have shown that 100 ms response time was per-
ceived as fluid or instantaneous feedback to user actions [32]). To be specific, the type of motion
we aim to simulate pertains to the update of each pedestrian’s position (the pedestrian’s center of
mass) in scenarios of large-count, high-density crowds. This situation arises commonly (but not
exclusively) at stadiums, concerts, busy shopping malls, mass protests, and during building evacu-
ations. The sheer number of pedestrians in the scene, reaching tens or hundreds of thousands (or
even millions, such as the crowds gathered at past US presidential inaugural events [39]), presents
a computational challenge for methods that share our goals. Separately, the high density presents
a modeling challenge, where local agent-based rules would reproduce global motion phenomenon,
as observed.
Our interpretation of a dense crowd is based on the report on contingency planning by the

United States Federal Emergency Management Agency (FEMA) [23]. From the perspective of a
pedestrian, FEMA categorizes crowd densities as follows:

—∼2.3 m2 (25 ft2)/pedestrian: Normal walking speed and comfortable maneuverability.
—∼0.9 m2 (10 ft2)/pedestrian: Restricted movements and noticeably slower speeds.
—∼0.5 m2(5 ft2)/pedestrian: Shuffling gait; calmmotion as a group; difficult to overtake others.
—<0.3 m2 (3 ft2)/pedestrian: Brushing and close contact with surrounding entities.
—<0.2 m2 (2 ft2)/pedestrian: Dangerous density with potential crushing injury.

For our purposes, a dense area is one with 0.3 to 0.9 m2 per pedestrian. At less than 0.3 m2, it is
considered a contact-collisionwith possible injury.We note that CFD does not simulate the physics
of contact collisions or friction among pedestrians as prior rigid/soft-body simulation literature
is already capable in this area and it is outside our scope of research. Rather, we are interested
in the dynamics of local collision avoidance attempts in dense crowds and the emerging motion
patterns.
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Fig. 3. Overview of proposed pedestrian update cycle.

3 CENTROIDAL PARTICLES

The Centroidal Particle Dynamics (CPD) method is a personal area-based microscopic method that
produces physical interactions, pressure propagation waves, and compression of personal space
due to the crowd’s collective attraction to an area of interest, in which it behaves as a compressible
fluid even when the crowd is stationary.
To simulate local pedestrian interactions, we first compute a combined personal space violation

map from which we can compute reactive penalty forces. The way each entity contributes to the
personal space can be modified and parameterized visually through weight maps. Finally, the new
location for each entity is computed by integrating the net acceleration force iteratively over sev-
eral frames. Figure 3 shows an overview of the method. In the first step, we use entity (pedestrian)
positions and scene bounds and construct a model of a Personal Space Map (PSM). In this model,
the personal space (PS) is computed to find out whether the PS areas of two entities overlap (called
sharing/violating the PS of each other). The generation of the PSM is a global operation that ex-
plicitly tessellates the scene’s area to map unshared PS areas to each entity. The next step is using
a model that represents each pedestrian examining one’s immediate surrounding, calculate how
much PS is violated, and reacting. To do so, a new geometric center (called the centroid) is com-
puted using the unviolated PS. As well, obstacles are rendered in the same distance field space.
We generate a vector pointing the pedestrian to this new centroid (the Centroidal Force), which
points to the place where the pedestrian will regain the most amount of PS possible. Then, we
integrate it with other forces (which can have different weights): global path, friction, proximity
to family members, and the like. Lastly, we apply an advection model due to the net acceleration
experienced by each pedestrian, which is integrated using a numerical solver (we use a Verlet–
symplectic integrator, a semi-implicit integration method with the computational efficiency of an
explicit solver, such as explicit Euler, and numerical stability, such as an implicit solver, without
introducing additional energy and providing long-term stability and reducing error propagation
[4]).
We now discuss some details on each of the steps.
(a) Personal Space Map: To be considered unviolated, any point in each entity’s PS must be

closer to that entity than to any other entity. This concept evokes the tessellations produced by
the Voronoi diagram. In fact, our definition of shared spaces can be geometrically represented by
a truncated Voronoi tessellation [17] that does not need to be computed pairwise: it can represent
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Fig. 4. (a) Subsection of a crowd; (b) PSM; (c) PSM visualized as an underlay.

an aggregated account of all PS violations of an entity in its neighborhood. The resulting PSM
outlines all PS violations across the crowd (Figure 4).

The PSM is defined as a partitioning of a 2D plane G (the ground) with obstacles (walls, gates,
vehicles, etc.) and pedestrians. After the PSM is built, every point g in G will belong to only one
entity (e.g., pedestrian, obstacle, or unoccupied space), as illustrated in Figure 4. Let T denote the
many-to-one mapping that partitions plane G. All points in G are considered unoccupied to rep-
resent all of the empty space available for any pedestrian to traverse (i.e., T (д) = 0 for all д ∈ G).
Let us assume that each pedestrian is assigned a unique ID from 1 to n. Finally, obstacles can be
explicitly defined by the modeler—for example, the set B ⊂ G—which denotes the areas that the
pedestrian needs to avoid. Additionally, scene geometry can be projected onto G as if viewed or-
thogonally from the top. Most scene geometry is already in 2D (e.g., architectural floor plans),
but any 3D geometry (e.g., columns) needs to be projected explicitly onto the PSM for collision
avoidance. To project 3D meshes onto G, the following transform is applied per vertex:

ProjG (v ) = v − (�nG · v ) × v,

where �nG is the plane’s unit normal vector and v=(vx,vy,vz) is a vertex position that has a height
vy between 0 m (ground) and 3 m (max human height) and does not explicitly belong to a ceiling
element. Then, for every point g ∈ G that falls within the polygons formed by ProjG(v), we set
g ∈ B. Hence, the set B contains all boundary points in space G that were defined explicitly by
the modeler along with all of the scene obstacle projections. If we denote d(a,b) as the Euclidean
distance between any two points a and b on G, then the tessellation is:

T (д) =
⎧⎪⎪⎨⎪⎪⎩

i, (d (д, pi ) < ri ) ∧ (d (д, pi ) < d (д, pj )) ∧ д � B
−1, for all д ∈ B (overrides all other cases)
0, otherwise

,

where i, j ∈ {1, . . ., n}; pi is the position of pedestrian i, and ri is the radius of i’s PS. We do not
explicitly differentiate between obstacles and assign them an obstacle value (–1). The entire PSM
tessellation process is memoryless and gets reconstructed on every timestep. In doing so, the

PSM can account for dynamic obstacles in the scene, such as revolving doors. The normal
vector used in the projection step could be altered to accommodate basic inclines, uneven terrain,
and stairs.
(b) Centroidal Force: The PSM defines the overall PS that the pedestrians occupy. Each entity

needs to view only its personal neighborhood (within radius ri ) to compute quantities related to its
PS violations.We compute the PS centroid, that is, the new center ofmass of the current PS, which is
the average position of all unviolated points in the PS area, to mimic peoplemoving in the direction
of the centroid to regain the most PS possible. Each entity is represented by a particle in the 2D
plane surrounded by a contiguous PS footprint (based on [7, 13], we use ∼0.8 m evenly around
the center). When entities get close to each other, we assume that the PS is shared equidistantly:
the closer they get, the more they (equally) violate the other’s PS. Experiments also have shown

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 4, Article 23. Publication date: July 2021.



Explicit Modeling of Personal Space for Improved Local Dynamics in Simulated Crowds 23:9

Fig. 5. Formation of new centroids during collisions.

Fig. 6. PS shape: Light area affects the entity and neighbors; dark area affects only neighbors.

that there is a short delay in human response to react and enact collision avoidance (∼150–350
ms). We use an area-based penalty force that reacts to the PS violation iteratively, attempting
to restore the preferred PS area over time. To be considered unviolated, any point in an entity’s
PS must be closer to that entity than any other. This is like the Centroidal Voronoi Tessellation
(CVT) relaxation algorithm [17]; we then overlay the combined PS onto the shared PSM, which
aggregates and outlines all PS violations. Given the PSM, each entity independently computes
the current unviolated area’s centroid (in CVT relaxation, the particle simply moves to the new
centroid, whereas we use the vector from the center of the original footprint to this new centroid),
as illustrated in Figure 5.

We can see that there is a primary directional force that moves the entity towards its destination
(following the global pathing shown in Figure 1). We then compute the net force f as a linear
combination of the global pathing force g and the penalty force p, which falls along the direction of
the new centroid. The penalty force produces the reactive behavior of our crowd. The magnitudes
of those forces and their stochastic variations are adjusted to create a smooth transition to the
entity’s desired speed, on average, 1.4 ± 0.24 m/s [7, 13].

We can modify the local dynamics by changing the footprint’s geometry or using a map to influ-
ence its weight. The PS footprint can be artificially varied over time or in response to events (e.g., a
fire alarm evacuation) or in proximity to points of interest (e.g., slowing downwhen window shop-
ping or near interesting booths at a busy exhibit hall). The shape can also reflect the entity type
(e.g., adult, child, stroller). The footprint can also accept a weight map that through simple con-
volution varies the impact of the PS infringement—for instance, placing a slightly heavier weight
on the right to indicate a preference for taking the “right lane” when encountering oncoming
traffic.
Based on empirical results [37], CPD uses a PS shape evenly weighted around the entity. Even if

an entity has its PS infringed upon outside of its vision, the individual reacts to pressure or sound.
We also provide the option of using a multi-area kernel that splits the shape into two key areas:
(i) the PS area that affects both the entity and its neighbors; and (ii) the PS area that affects only
surrounding neighbors (Figure 6). Now, the net separation between entities remains at ∼1 m, but
the entity with visibility will shoulder most of the corrective efforts to maintain the distance. The
entity in the back maintains most of the separation distance; thus, the severity of PS compression
around areas of congestion is reduced. Additionally, we have an extension proportional to the
entity velocity: the PS extends by ∼0.4 m per m/s. This extension is slight for walking speeds
(∼1.4 m/s), but noticeable at running or cycling speeds (>3 m/s). Figure 6 illustrates this multipart
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Fig. 7. Steps to compute the centroidal force.

Fig. 8. Centroidal force on different types of obstacles.

modification, accounting for the narrowing focus of speeding entities, providing collision
anticipation.

Taking these aspects in consideration, the equation for computing the centroid is

ci =
��
�

∫∫
PSi

x · λi (x ,y) ·wi (x ,y) dxdy

Ai (s )
,

∫∫
PSi

y · λi (x ,y) ·wi (x ,y) dxdy

Ai (s )
	

�
,

Ai (s ) = Euclidean area of active region of PSi given speed s,

λi (x ,y) =

{
1, sampleG (x , y) = i,
0, otherwise,

wi (x ,y) = mask sampling function =

{
1, (x , y) ∈ active PSi
0, otherwise,

The original centroid of PSi’s active region (uci) is not guaranteed to be at the entity’s position
(pi). Thus, the new centroidal force (illustrated in Figure 7) is computed as c fi = ci − uci .

We employ the notion of the Fundamental Diagram [45, 46] in which pedestrian speeds, on
average, vary inversely to their local density. Empirical data have shown that the Fundamental
Diagram differs depending on the context of the crowd (e.g., indoors vs. crosswalk) and across cul-
tures. We use it to determine the desired speed for each individual entity dynamically throughout
the simulation.
As the centroidal force is an aggregate measure of PS violations, regardless of the obstacle’s

curvature (axis-aligned, convex, concave, etc.), the centroidal vector will point away from PS
violations, which allows collision avoidance with obstacles of arbitrary shapes (e.g., vegetation,
furniture, etc.). Pedestrians perform an iteration of the Lloyd algorithm [22] on truncated Voronoi
cells representing PS. When an entity has all of its PS unviolated, the centroid is simply the
entity’s current position. Let PSi ⊂ G denote pedestrian i’s unviolated PS region. When another
entity/obstacle invades i’s PS, the new centroid position ci = (x̃ , ỹ) is computed, as seen in Figure
8. The actual implementation of these integrals boils down to a couple of weighted summations
over a 2D grid of PSM pixels.
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(c) Global Path Finding: The global path is one that, absent any other dynamic entities in the
scene, would guide an entity to its destination efficiently (e.g., shortest time, cost, etc.). The only
obstacles considered by the global path are static scene elements. The literature is saturated with
methods in this area (e.g., A*, floor fields, AI navigation trees [9]). Thus, we assume this to be an
input into our net force integrator. If the scene obstacles are defined over a graph, then a method
such as A* [63] would work well, as it efficiently computes such global paths per entity and can
be updated often. For large-scale simulations with thousands of pedestrians with relatively few
possible global targets within the scene (e.g., only dozens of shops in a mall), a single global floor
map per target is more efficient. The map is essentially a 2D gradient field that points an entity to
the direction it needs to follow to reach the global target. See [2, 53] for example implementations
of this floor field.
CPD is a local dynamics method that does not place limitations on the kind of global pathing al-

gorithm used. This is a direct illustration of the separation of concerns discussed earlier in Figure 1.
However, as this research focuses on the local dynamics layer, we experimented with the simplest
forms of global pathing (to reduce the influence of “intelligent” path finding over CPD indepen-
dently). Some of the experiments to be discussed later discarded global paths entirely to evaluate
the emergent behavior from local dynamics alone (e.g., aimless crowds experiencing overcrowd-
ing and stationary crowds at a concert). The global pathing forces we used are time invariant;
they rely only on the current position of the entity to find the “next” step along the global path.
Prior to the force integration step, we computed a resistance to centroidal forces that opposed the
entity’s global path/objective, inspired by the energy-minimization goals set in ORCA. It reduced
the “springiness” of near-miss collision in our pedestrian crossings significantly. Even if the local
centroidal force is pointing the entity to face away from the global path, the entity will resist this
change and attempt to wait until more favorable centroidal forces are available.
(d) Net Force: The total force experienced by each entity is a weighted sum of the local forces

and the global pathing direction. In ideal conditions with a single entity in the scene, it would
simply follow the current global path to the destination. However, the local forces enact collision-
avoidance maneuvers with their surrounding environment and entities. The net force calculation
is

nfi = α c fi + β дf (pi ) + γ u fi ,

where gf(pi) is the global path vector given i’s current position in the scene and α , β , and γ are
scalar weights to parametrize the behavior of the entity. An aggressive pedestrian has low α and
high β , emphasizing the pedestrian’s own global path with little regard for local PS violations
(indicated by cf). This is essentially how our close-range pedestrian behavior can be calibrated
according to reference trajectory data. We have empirically arrived at a set of parameter values
and illustrated their results (in general, we use α = 0.7; β = 0.2; and γ = 0.2). Lastly, the velocity
resulting from the time integration of these forces and their stochastic variations are clamped to
stay within the entity’s desired speed. We used the average desired speed for walking pedestrian
of 1.4 ± 0.24 m/s [37, 38].

It is possible to further refine the parameters and automate their calibration using context-
specific reference trajectory data. Existing parameter estimation platforms that capture path plan-
ning and collision-avoidance behavior from footage/mocap data could be used to perform looped
optimization (or machine learning) to optimize the simulation model’s parameters to best fit with
the input data. Automating calibration would allow modelling of behavior that changes across
cultures, event types, age groups, and unforeseen contexts. However, such platforms encompass
the overall motion of the crowd, not just local collision avoidance. This is beyond the scope of this
research.
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Fig. 9. PSM 2D bitmap: Truncated Voronoi cells created by a top-view orthogonal projection of 3D cones.

4 CPD IMPLEMENTATION

The 2D nature of the PS kernels and their response forces allows us to reason about the proposed
method from a Computational Geometry lens, invoking visual data structures and algorithms to
implement a computable version of CPD. This section outlines a prototype implementation de-
veloped throughout the course of this research. The presented implementation produces online
simulation results for thousands of entities in the scene.

4.1 Discrete-Space Implementation of CPD using Truncated Voronoi Disks

Voronoi tessellation has been used to accelerate spatial queries such as nearest neighbor search [11,
43] or global path planning [36]. Recently, it has been used to identify a discrete set of candidate
local vectors to pursue, essentially, along one of the neighboring Voronoi cell edges [40, 61]. This
approach (which was developed concurrently with our own research) shares the simplicity and
intuitiveness of our method but does not explicitly model an entity’s PS or its compression; thus;
it is unsuitable for dense crowd scenarios or largely stationary ones (e.g., a concert). Our proposed
use of the truncated Voronoi diagram as an analog for compressible personal space is unique, as
is our visual parameterization through dynamic weight maps.
A spatially discrete version of the continuous PSM presented earlier can be created using a

truncated Voronoi diagram whose cells are bounded by a certain distance from their sites. We use
the GPU-accelerated computation method for Voronoi diagrams introduced in [17] to produce
the PSM, followed by custom shaders to compute the centroidal forces per entity and integrate
them with other global forces before finally solving them for timestep δt . In contrast with
the continuous-space method described, the simulation space is implemented as a discretized 2D
grid (a bitmap). We use textured 3D cones to represent the entities and their personal space, with
the tip of the cone representing the PS center, and the base representing its outer edges. In effect,
the height along the surface of the cone encodes the distance to the center of the entity. When
rendered from an orthographic top view (free of any perspective distortion) facing the tips, two
cones will overlap at precisely the points that are equidistant to both entities [17]. Figure 9 shows
this procedure.
By encoding the entities as geometric primitives and using the GPU’s depth buffer to obtain the

PSM tessellation as discrete pixels quickly, we are left with a globally shared data structure (the
PSM bitmap) that allows each entity to compute its relative centroid and resulting penalty forces
in a data-parallel fashion (Figure 10). The entities do not need to conduct a costly nearest-neighbor
search, as they consume and interact with the set of pixels representing their PS in the PSM.
To differentiate between the rendered cones, they are colored using a one-to-one reversible hash

map (a function of the unique entity IDs). We reserve the first 10 colors in the 24-bit RGB space
for obstacles and debugging purposes and use the rest to uniquely color code each entity. The
reverse lookup (which is also a constant cost function) enables any entity to identify the ID of
another entity directly infringing on its pixel space. Theoretically, we could simulate more than
16 million entities on a 24-bit RGB PSM surface and potentially billions of pedestrians on higher
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Fig. 10. Data-parallel implementation of CPD.

bit-depth surfaces. Nevertheless, practically speaking, 16 million entities could only be afforded a
single pixel each on a 4k × 4k PSMmap as a best case-scenario. The cones act as a bounded signed
distance field around each pedestrian; by rendering the cones, we compute the distance field for the
entire crowd all at once. In using these 3D cones, which can be parameterized to include different
kinds of pedestrians, the Z-buffer will generate a correct kernel for each pedestrian without a
global neighborhood computation algorithm, as discussed earlier. We offload this computation to
the GPU by rendering the 3D cone opposed to traditional methods that need to compute each
near-neighbor force.
To compute the true center of PS footprints that have an influence map, vary by time, or are

proportional to the entity’s speed, we first calibrate each PS shape for bias and then adjust the
cone tip and texture accordingly. Without this step, an asymmetrical PS area that, for instance,
elongates with speed will experience an ever-increasing force in the direction of travel. Instead,
the violation-free bias should be considered to detect true violations of the PS area. The mass of
the individuals can be modeled by adjusting the height of the cones. The heavier the individual
is (less likely to be affected by force), the closer the cone should be to the camera. Essentially, the
lighter individuals would have to exert more force to make up for their increased distance from
the camera and infringe on the heavier individual’s space.
There are two ways to aggregate the centroid from the PSM, either:

(a) Per-pixel: If there is overcrowding resulting in significant PS overlap and it is more eco-
nomical to count the visible pixels and aggregate the results using reverse hash lookup.

(b) Per-entity: In sparser scenarios, it is more efficient to skip the PSM’s empty pixels and
simply count the unviolated pixels near each entity.

A simple heuristic we used in our implementation checks: if (|entities| × π r2) > (1.2 × PSM area)

perform (a); else perform (b), where r is the average PS radius. We take each PSM pixel to represent
10 × 10 cm. Thus, our PS radii can range from 8 to 10 pixels, as sizes vary in a crowd.
We began the exploration of this centroidal area force in the context of crowd simulation due

to the natural limits of human acceleration and velocity. While it might be tempting to directly
use this force for physics-based simulation of fluids, soft-bodies (such as clay), and granular solids
(such as sand), the unpredictable, often chaotic, and extreme accelerations experienced within
those bodies require more careful consideration. It would be difficult to dismiss the nearest neigh-
bor search entirely if our “implicit collision” response force were to be used for physics-based
simulation. However, in its current form, the effort presented in this article certainly opens the
possibility for less critical applications, such as film, gaming, and immersive virtual reality (VR)

experiences.
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Fig. 11. (a) Local density estimated per entity; (b) global low-pass filter applied.

4.2 Scalability

GPUs are efficient when it comes to massively data-parallel processing, but they also have built-
in memory limitations on texture sizes and, by extension, the size of the PSM maps that we can
compute for a given scene. A possible route is to use a courser grid to represent the scene, at the
cost of simulation fidelity. A more reasonable approach in this instance is tiling. Regardless of the
shape and complexity of the simulation plane, it can be divided into smaller tiles that fit within
the supported texture sizes by the GPU. The overhead in this case will be in cross-tile communica-
tion (for entities that fall near the edge of one tile but with a PS area that spills into a neighboring
tile).
A straightforward approach that minimizes communication across tiles is to have them over-

lap their computation space by an amount equal to the average entity PS radius. This means that
entities near the tile edges will likely have their forces computed twice (once in each tile). How-
ever, the locality of data access within a given tile means that the duplicated computations are
still more efficient that the cost of texture-switching and CPU-synchronization required for cross-
tile communication. Like how we skip empty pixels in sparse crowds, we extend the concept by
skipping entire tiles if they are empty, and processing only the occupied ones. These tiles can
be dispatched for simultaneous processing across multiple GPUs if available. Furthermore, the
recent development of low-overhead graphics APIs such as Khronos Vulkan and Microsoft Di-
rectX12, which allow and encourage the multi-threaded dispatching of render-calls [48] supports
the scalability potential of our method. CPU threads could concurrently launch and synchronize
GPU-computable PSM tiles without costly context-switching (a required cost for the ubiquitous
graphics APIs: OpenGL/WebGL/DX11).

4.3 Density Estimation

Computing local density is important to conduct flow rate analysis and aggregate PS violationmea-
sures. It is possible to obtain an estimation of the local crowd density near an entity by leveraging
the existing PSM to compute a density value di (entities/m

2) as the reciprocal of the unviolated
portion of that entity’s PS area. Once known, we render another PSM pass. However, this time, we
color every entity i using the estimated di , where brighter values correspond to higher densities.
We then smooth the discontinuities using a Gaussian blur filter (a standard and parallel-friendly
utilization of the graphics pipeline. The resulting smooth density field is shown in Figure 11.

It might be argued that better density estimation methods exist, such as those found in physics
simulations using Soft Particle Hydrodynamics (SPH) that rely on cubic kernels to accurately con-
verge to a true density continuum [35]. However, we opted for the Gaussian kernel applied to our
PSM with a radius of half a footprint’s radius in effective pixels. Not only is the result sufficient
for our purposes (an estimation of density) but it also helps that it is not too precise, since the
Fundamental Diagram is only an aggregate of human behavior that hides individual variations
and human inaccuracies that would naturally occur from an entity subconsciously assessing its
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surrounding. Furthermore, the Gaussian filter is linearly separable, meaning that we can blur all
the rows first using a 1D Gaussian, then blur the columns to obtain the final 2D Gaussian blur. This
optimizes the computation of the convolution from a quadratic O(n-m2) computation to a more
linear O(n-m), where n is the number of pixels in space, and m is the radius of the filtering kernel.

4.4 Hardware-Acceleration via GPU Shaders

So far, we have implemented the PSM using a constrained Voronoi diagram over a discrete sur-
face. The idea is to render every entity PS as a 3D cone viewed from the top, and the pixels visible
after all cone intersections will represent the remaining available personal space. This utilization
of the graphics pipeline allowed us to achieve interactive frame rates for thousands of entities in
the scene [15]. In our attempt to accelerate the CPD’s PSM computation, the CPU was initially
found to be the primary bottleneck due to the repeated cone rendering calls made for each en-
tity. Each render call comes with API overhead and CPU-to-GPU memory transfer costs. Modern
graphics APIs have features that allow instanced rendering. The CPU would send the shape infor-
mation only once, along with a point cloud of instance locations. Then, the GPU would perform
the replication on chip without needing to communicate again with the CPU over the slow system
bus. Unfortunately, this feature could not be naïvely used for PSM computation because of the
potentially differing PS shapes, especially with the introduction of velocity-dependent elongation
in direction of travel.
With nothing to “instance,” we opted instead to develop Geometry Shaders that dynamically

generate the PS shapes on the GPU. Geometry Shaders are part of the modern graphics processing
pipeline that can procedurally generate new meshes and geometry that the CPU did not initially
send. Our geometry shaders accept a point cloud of entity positions along with an array of entity
attributes (e.g., current velocity, bearing, desired speed) and lets the GPU generate the appropriate
voronoidal PS shapes per entity. This reduction in CPU calls has improved the frame rate. Fur-
thermore, to compute each entity’s new centroid position, we opted for a vertex shader (run once
per entity, in parallel) that computes the available PS space (and the violated space, by omission)
by sampling the previously created PSM (which was input into the vertex shader as a texture).
This further resulted in performance gains that improved scalability and significantly reduced the
bottlenecks at higher crowd counts (10,000+ entities in the scene).

5 EMERGENT CROWD DYNAMICS

In this section, we explore the global crowd dynamics that emerge from the locally defined agent-
based rules of CPD. The simulations illustrate various scenarios of dense crowds and associated
obstacles; our focus is on emergent crowd phenomena in high-density scenarios. We first describe
the general simulation setup and then discuss each phenomenon. Although we already indicated
that a detailed quantitative evaluation of the model is outside the scope of this research, we con-
ducted detailed quantitative and qualitative analysis of the results presented in this section. We
obtained a dataset included in [20] that was used for exhaustive studies of the simulation results.
The dataset includes pedestrian motion real-world data from laboratory experiments; the detailed
traces were used to validate all of the results of this research.
Our virtual world is defined as a 3D scene containing a flat ground onwhich themotion of entities

(pedestrians) is simulated. They share their ground space with static scene obstacles (e.g., walls),
dynamic elements (e.g., gates), and dynamic accessories (e.g., strollers and shopping carts). The
invisible computational “backend” of the simulated world includes the PSM top-projection camera
and the rendered PSM that it generates every timestep. Ideally, the ground shares the same aspect
ratio as the PSM being computed on it to ensure isotropic computational fidelity regardless of
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Fig. 12. Compression of personal space and petal-like emergent pattern.

which direction the pedestrians are facing in the scene. We maintain an agent-based approach, in
which each entity encapsulates its own data and never has direct access to neighbor entities’ data.
All simulations were run with discrete-time integration, using a quantum of 0.1 s per frame

after finding minimal improvements in quality with a finer time delta. Each pixel side length rep-
resented 10 cm of physical space. For each scenario, we initialized entity positions, orientations,
and randomized a few parameters such as weight, size, and the base desired speed (1.4 ± 0.24
m/s). The entity PS base radii were kept at 9 pixels (plus 1 center) to achieve the ∼0.8 to 1.0 m PS
idle radius. The shaders described earlier were implemented using the OpenGL Shading Language
(GLSL). Parameters were randomized across the crowd, including the PS radius, desired speed,
and force parameters (α , β, and γ ) which alters how aggressive or lenient an entity gets about
restoring its own personal space and violating others’. Children were given the same PS radius as
adults but rendered with weaker Voronoi cones (i.e., farther away from the PSM top view camera)
to reflect the increased the chance of being overpowered by adult personal spaces or getting swept
away by strong crowd flow in dense settings [10, 54]. The obstacles could be procedurally drawn
during runtime or loaded from a bitmap (e.g., architectural floor plans). We focus on the emerging
behavior producing four of such phenomena that are commonly studied:

—Lane formation in bidirectional flow
—Compression of personal space in areas of congestion and near areas of crowd interest
—Petal-like space filling
—Inverse correlation between an entity’s surrounding density and its speed

The last effect is perhaps the easiest to reason about: in denser areas, a pedestrian tends to
move slower. That relationship has been recorded, analyzed, and formalized, culminating in what
is known as the Fundamental Diagram [45], a macroscopic measure of the crowd’s density-speed
profile.
Another phenomenon is the emergent petal-like space-filling pattern, in which each entity

stands roughly behind the midpoint between the shoulders of two entities right in front of it (e.g.,
Figure 12, which shows a snapshot from an in-lab crowd-capture experiment [64], demonstrating
both the compression of personal space near the congestion and the petal-like space-filling emer-
gent pattern). Each entity optimizes the utility of the shared limited space [66], as there is less space
compared with entities standing directly behind each other. As well, the entity has improved vis-
ibility of its target motion vector (i.e., it can better see where it is heading or has a better view of
a point of interest, such as the stage at a concert). Figure 13 also demonstrates the compression
of personal space near a congested doorway. This shows an in-lab trajectory capture experiment
[47] in which two crowds of the same count are asked to evacuate through the narrow exits. The
scenario on the left has no guiding barriers, while the scenario on the right utilized barriers to
passively shape the crowd.
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Fig. 13. Two crowd evacuations through narrow exits: without barriers and with barriers.

Existing microscopic crowd models struggle to reproduce these effects, as they model personal
space as a 1D rigid separation distance, leading to artificial congestion and jamming, while cap-
tured crowd data such as what we see in these experiments indicate otherwise. CPD, instead, uses
a compressible 2D area-based model of each entity’s personal space; this local avoidance model
can recreate such emergent compression effects in both dynamic and stationary crowds. A simple
change in the design of passive barriers results in dramatically differing density profiles in a largely
stationary crowd as it trickles through the narrow exit gates. This illustrates the accumulative na-
ture of personal space compression and how restricting the possible angles of such accumulation
can reduce the compression. Personal space compression is not just a matter of personality or
personal preferences; the barriers in the environment also play a role. Note that at these densi-
ties, we are not considering psychological or personality-driven factors [49]. We are observing the
nearly biomechanical collision avoidance response vectors that pedestrians tend to exhibit in such
scenarios.
As discussed earlier, state-of-the-art methods such as RVO and ORCA, as well as Implicit

Crowds, end up with incompressible artificial congestion that does not match how people tend
to gradually concede their personal space to ensure a continuous motion. As these methods are
based on analysis in the velocity space [20], they cannot reproduce compression in largely sta-
tionary crowds (e.g., near a concert stage or at a marathon start line). CPD provides an improved
local collision avoidance model that reproduces emergent dense crowd phenomena, including lane
formation in bidirectional flow, compression of personal space near congestion and near areas of
crowd interest, which current microscopic methods struggle to reproduce correctly.
Other existing crowd simulation tools produce this kind of emergent behavior, but their pro-

file is not adequate when compared with reference material, as will be shown in the next sec-
tions. CPD can produce queues and lane formation that match the reference source data, including
thin snaking lanes with organic forks and joins (whereas existing methods cannot generate such
behavior, and instead produce straight lines of pedestrians or lines clumped up, including lanes
3–4 people wide). State-of-the-art methods also must explicitly program these behaviors (which
emerge naturally using CPD); thus, the computation stops being local and instead one must force
region-based heuristics. In the case of CPD, there is no explicit programming of these behaviors,
which are also parameterizable locally: we can adjust the profile for running/walking speeds as
discussed earlier and can change the level of aggressiveness while keeping all computations local
and not needing regional control for any of these. The computations are done at the level of each
pedestrian and during the computation of their interactions with other close pedestrians. Existing
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Fig. 14. Bidirectional flows: left—stable lanes emerging; right—unstable lanes.

tools normally use non-local modifications and stylistic control for achieving this kind of behavior,
which emerges using CPD.

5.1 Bidirectional Flow

Bidirectional flow is a common scenario for hallways and corridors where pedestrians exhibit two
dominant and opposing directions of motion. One of the well-studied observations of bidirectional
flow is the emergent lane formation [66]. Lane formation is an innate pedestrian optimization
strategy to minimize resistance due to oncoming traffic. The apparent “interlocking” pattern is
born out of each entity’s desire to take the path of least resistance. In bidirectional scenarios,
this simply comes down to avoiding oncoming traffic. This is a macroscopic phenomenon that is
emergent from microscopic local dynamics (i.e., there are no globally controlled explicit “laning
rules”).
The phenomenon of self-organized lane formation has been observed in bidirectional flows of

real crowds in general and has also been confirmed in dense crowds. Figure 14 shows an in-lab
study in which lanes are formed as a global phenomenon that emerges from local optimization
decisions [64]. Lanes emerge from the collective motion of the crowd, with each entity trying to
optimize its path, finding vectors of least resistance to its intended target, and avoiding head-on
collisions with oncoming traffic. On the left, the crowd was not asked to seek a specific exit point
along the width of the corridor. On the right, unstable lanes emerge when pedestrians explicitly
seek a specific target exit. Existing simulation methods struggle to reproduce unstable lanes, as
with each footstep. Instead, in CPD, each entity tries to minimize the deviation from its target
path and the potential for collision with oncoming traffic. Following behind another entity that
shares a similar direction of its motion will result in the least pathing disruption as they progress
in the same general direction down the corridor. When this local agency ripples across the crowd,
lanes start to emerge and form.
Figure 15 shows a bidirectional scenario in which our method is capable of reproducing lane

formation using the symmetrical PS kernel. The figure shows a natural lane formation during a
bidirectional flow simulation of 2,000 entities on a 600 × 800 PSM grid.
When we use the asymmetric PS kernel (recall that it considers the entity’s vision cone, shifting

the bulk of the collision avoidance response force to the entity with vision of the shared PS viola-
tion), the observed CPD emergent lanes exhibit less congestion near lane forking and branching
spots. We also have a better resemblance to the lanes formed in real-life bidirectional flow. This is
illustrated in Figure 16, which shows a top view of our simulation of bidirectional flow of a dense
crowd (1,000 entities) in a wide corridor, in which we see similar branching/merging patterns to
those observed (the bottom right shows a still frame of real footage [56] of bidirectional flow in
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Fig. 15. Natural lane formation in bidirectional flow simulation (blue entities headed south).

Fig. 16. Emergent lane formation produced by CPD pedestrians in a dense bidirectional flow scenario.

Fig. 17. Other real-time crowd simulation algorithms. Images captured fromWarpDriver DOI: https://bit.ly/
2R6w1tQ, [34] and https://bit.ly/2s6athT (for academic use only).

a corridor). The entities in both our simulation and the real footage are color-coded to indicate
direction of motion (East-West).
Figure 17 shows how the state-of-the-art methods (WarpDriver [59], ORCA [50], RVO [3], Social

Forces [14], and position-based [58] crowds) that share our application target of real-time crowd
simulation reproduce bidirectional flow.When compared with our CPD pedestrians discussed ear-
lier, those methods either fail or struggle to reproduce believable lane formation in dense crowds.
Position-based crowds is another recent method that struggles with reproducing organic

laning—their motion trajectories are either too aggregated or suffer from excessive artificial
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Fig. 18. (a) Pedestrian footage in a narrow bidirectional corridor. (b) Trace of trajectories [66]. (c) Simulated
trajectories with CPD.

congestion. When considering the average lane width, CPD was able to reproduce thin and
piercing lanes that exhibit branch-and-merge patterns throughout the simulation timeline.
WarpDriver can reproduce thin lanes but they appear too axis-aligned (or “straight”) as opposed
to the real footage’s more organic and curved branch-and-merge patterns. Social Forces, ORCA,
and Power Law fail to exhibit any laning at such high densities due to their reliance on a rigid 1D
uncompressible separation distance, resulting in overly collision-averse congested areas rather
than smooth lane formation that our compressible 2D PS model can reproduce. Position-based
crowds succeed in forming dense lanes, but they are unrealistically wide and eventually clump
into congested and aggregated motion patterns, whereas groups of entities appear to move
precisely in unison during lane formation.
There is a lack of agreed on metrics to measure that statement quantitatively. Cross-sectional

velocity distribution charts [44] and average velocity grids [6] have been previously proposed to
quantify the flow. However, in our view, they aggregate away many of the microscopic details of
the flow dynamics that motivate us. Instead, we propose to do a cursory analysis of the observed
quality of the emergent lanes compared with live footage. Then, we examine the microscopic tra-
jectory traces, which paint a richer picture of flow dynamics. The quality of the emergent bidirec-
tional lanes can also be assessed over a period of simulation. Diagrams that trace the trajectory of
each pedestrian can capture an overall snapshot of such dynamic patterns over time.
Figure 18 shows a trace of the trajectory of a real bidirectional flow scenario in a 3.6-m-wide

corridor obtained from [66]. The participants in this experiment were randomly assigned an x-
axis target on the other end of the corridor, leading to emergence of lanes, as apparent from the
trajectory trace, and are termed unstable as they vary spatially and temporally. Larger-sized exper-
iments are difficult to construct and coordinate (e.g., this experiment required over 300 volunteers).
Simulation, instead, is a useful tool here.
The trace in the figure shows how our model was able to replicate the emergent lane formation,

appearing nearly congruent to the observed trace. We were able to reproduce better laning behav-
ior when compared with state-of-the-art tools. This was not only done by observation—we also
obtained the detailed traces of the original experiments and verified the similarities between them.
Given further rigorous statistical validation, our method could facilitate urban design and safety-
critical planning for large-scale crowded events [29]. As the method deals with local interactions,
our analysis focuses on the study of local results, as discussed in this section.
As demonstrated in lab experiments on bidirectional flow [20], lanes emerge from the collective

motion of the crowd, with each entity trying to optimize its path, finding vectors of least resistance
to its intended target and avoiding head-on collisions with oncoming traffic. Our method mimics
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Fig. 19. Penalty forces in action in an overcrowded area.

Fig. 20. Gradual release of density-dependent velocity. Snapshots of a marathon start and CPD.

these behaviors with precision. We used the information in the dataset to study the correctness of
the simulation results generated by the model, discussed in this section.

5.2 Local Density and Personal Space

In sparse scenarios, the centroidal response force acts like a microscopic method whose goal is to
avoid collision with nearby entities. In denser cases, where personal space compressibility is ob-
served, it starts displaying macroscopic qualities that mimic waves and energy propagation among
the crowd’s individuals. At less than 3 ft2 of personal space per entity, the crowd reaches a crit-
ical density [23], where entities are subjected to enough pressure to cause significant discomfort
and injury, with potential injury at <2 ft2. This is a concern in large-event contingency planning;
simulation can help identify pockets of potentially unsafe accumulation and overcrowding of at-
tendees [10]. Figure 19 shows such behavior in a virtual crowd of 1,000 entities in a confined area.
We can see how members of the crowd react to the fact that they are overcrowded. Penalty forces
are enough to cause an overcrowded room to diffuse to a more comfortable equilibrium.
Requiring neither a cognitive model nor a global pathing scheme, the centroidal response force

can restore the compressed crowd to a more comfortable distribution naturally and gradually,
filling the room if necessary, until every entity reaches a suitable local density. This can be seen in
real life when crowds are held behind barriers and a gate opens, allowing the otherwise compressed
crowd to immediately diffuse through, fan out, and reclaim their personal space. Those on the outer
edge of the crowd have less density to deal with, so they have the greatest freedom to accelerate to
higher speeds compared with those that are relatively slowed or still trapped in higher densities.
This same effect can be observed at the beginning of a marathon. As shown in Figure 20, the

wave of delayed acceleration is the result of those at the front of the race having the advantage
of lower density ahead of them, allowing them to sprint ahead sooner while those behind are
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Fig. 21. Arching patterns.

stuck to less competitive speeds until the wave catches up to them eventually and the speeds
equalize. Unlike the compressed room in Figure 19, the marathon scenario has a global path vector
along the marathon track applied evenly to all contestants. However, the centroidal response force
reproduces the observed emergent acceleration wave effect.

5.3 Observable Patterns in Stationary Crowds

Figure 21 illustrates the phenomenon of personal space compression in largely stationary crowds.
The figure shows a bottleneck arching pattern (top left), which displays arching, gradual PS com-
pression, and petal-like formations observed in crowds during egress [56] (top right) and while
stationary at a concert (bottom). This is a challenging effect to simulate in many state-of-the-art
methods because of their reliance on relative velocities and optimization in velocity space, which
would have a difficult time distinguishing between static entities at varying distances from a bar-
rier or an area of collective interest. Our area-based force can accumulate the compression, through
time-iterative energy transfer, in high-density stationary crowds. This effect aligns with observed
PS compression in both moving and static crowds in Section 5.2. In addition to arching, huddled
crowds tend to display petal-like formations (as each entity attempts to be situated behind the
midpoint of the two entities ahead). That increases the entity’s visibility of the point of interest
(or global path destination), and results in an overall more compact space filling, as it attempts to
equalize the number of neighbors surrounding each entity. The PSM can be directly shown as an
underlay to visualize the personal spaces used for centroidal force calculations. It also provides
local density visualization. The figure shows a common emergent crowd phenomenon (arching
around pathway bottlenecks), with noticeable compression of personal space near a narrow exit.

5.4 Simulation Performance

CPD design is adequate to be computationally parallel friendly; thus, the method can be used in
parallel computing devices. The results show interactive frame rates with thousands of entities in
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Fig. 22. Artificial scenario used as a case study. Entities are color-coded by motion direction.

Table 1. Simulation Performance in Frames per Second (fps)

CPU&CPU
Non-instanced Rendering

GPU&CPU
Instanced Rendering GPU Shaders

# Entities Desktop
GTX1060

Laptop
Core i5

Nexus 6P
(Android)

Desktop
GTX1060

Speedup
(compared with CPU&CPU)

100 160 105 30 450 2.8×
250 125 87 23 3 2.7×
500 90 62 18 266 3.0×

1,000 58 41 13 134 2.3×
1,500 44 31 10 121 2.8×
2,000 33 26 7 89 2.7×
5,000 16 12 3 47 2.8×

10,000 10 7 - 25 2.3×
15,000 7 4 - 20 2.6×
20,000 6 3 - 14 2.3×

the scene, as discussed in this section. The main metric of interest is the average frame rate. The
case study presented in Figure 22 uses our model to simulate bidirectional flow over a 600 × 900
PSM (effectively, a 60-m corridor) while varying the number of pedestrians in the scene.
The case study shows how the algorithm can provide effective animation features (expressed

as the number of frames per second, which gives an accurate idea of the quality of visualization
for serious games and entertainment). The experiment includes many active entities; all of the
individuals in the scene are moving (in contrast to more static scenarios, for instance, those caused
by bottlenecks); this provides an opportunity to study a pedestrian scenario with a high level of
activity.
Table 1 shows the results obtained for this scenario using three representative consumer-grade

devices: a mid-range desktop computer (4GHz Quadcore CPU + NVIDIA GTX970 GPU), a laptop
computer (Intel Core i5 with integrated HD Graphics 4000), and a smartphone (Nexus 6P with
Qualcomm Adreno 430 GPU).
Each simulation cycle involves two major phases: PSM construction (i.e., cone rendering) and

per-entity forces computation (centroidal, global, net, etc.). Our engine, used in [15, 16], was built
on Processing 3.0 (a Java-based graphics framework) and supported two computation modes: (a)
CPU&CPU: CPU OpenGL call per cone render; CPU-computed forces; and (b) GPU&CPU: GPU
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Fig. 23. (a) Log chart of PSM (i.e., PS cone rendering). (b) Log chart of full CPD cycle.

instancing to concurrently render all cones; CPU-computed forces. While the Android device was
capable of simulating higher crowd counts, it was no longer able to do so at interactive frame rates
(i.e., 8 fps or higher). The performance gain from implementing the GPU shaders for instanced cone
rendering is noticeable, at ∼2.6× throughout. Given the 100-ms time quantum, every 10 frames
represented 1 second of simulation time. Hence, this Java implementation produced faster-than-
real-time simulation for up to 20,000 entities in the scene and maintained reasonably interactive
frame rates for even higher counts. Later iterations of the engine were developed using C++17
and OpenGL 4.3, removing the dependency on Processing and on a Java Virtual Machine (JVM)
at runtime. For this engine, the PSM construction phase (i.e., cone rendering) is always GPU-
instanced. However, the force computation phase can be executed in a variety of ways. Force
computation per entity involves querying the local PSM area for PS violations, computing the
response centroidal force(s), and advecting positions.
Figure 23 charts CPD’s computational performance.We use CPD++ (Kaveri QuadCore+GTX970

with /O2 compile) and a PSM: 600900. The figures show the computational performance in frames
per second, plotted against the scene’s crowd count.
The C++ engine implements from the algorithm in Section 3 several computation options or

modes:

• CPU Single Threaded: The global PSM is fetched from the GPU into RAM, and a CPU loop
iterates over every entity to compute its forces and advect its position. New positions are
sent back to the GPU (visualization) and made ready for the next frame’s computation.

• CPU OMP (4 Threads): A multi-threaded implementation utilizing OpenMP 2.0. Once the
PSM is fetched from the GPU into RAM, OpenMP splits the workload over the available
CPU threads. In this case, we tested a quad-core CPU; hence, we utilized 4 threads. Lastly,
the new positions are sent back to the GPU, as done in the single-threaded mode.

• CPU (4) + Periodic Render: Rendering at higher frequencies than supported by the screen
is essentially wasteful. Hence, we use the same OpenMP multi-threaded computation, but
only perform the visualization step at courser timesteps. For example, if you can compute
forces at 2,000 fps, visualization on a 60-Hz monitor will be performed every ∼16 ms.

• Naïve GPU Compute: After the PSM computation, an OpenGL 4.3 compute shader contain-
ing the force computation logic is dispatched to the GPU. In this case, instead of iterating
over each entity in a loop, the shader launches a compute thread per entity.
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• GPU-Compute + Direct Rendering: In this mode, the PSM construction shader (i.e., cone
rendering) and the forces compute shader share access to the same buffer of entity data,
eliminating all GPU-to-CPU and GPU-to-GPU copies entirely, including the initial fetch of
the PSM to the CPU, because the CPU is not involved in the force computation at all.

Of interest to note from the figures is that the overhead of launching multiple threads in the
CPU OMP Compute mode is too expensive compared with the single-threaded CPU-compute
option for relatively small crowd counts (less than 10,000 entities). But the speedup due to
CPU multi-threading does improve with higher crowd counts. Periodic rendering improves the
multi-threaded CPU mode’s performance in the PSM computation phase but not in the overall
CPD computation. This typically indicates that the PSM computation is not the bottleneck in the
overall CPD algorithm (a pleasant by-product of formulating neighborhood queries as a GPU-
accelerated cone rendering problem). Instead, it appears that the centroidal force computation is
the primary overall bottleneck and the GPU modes provide a clear performance speedup in the
CPD’s overall computations.
With zero-copy direct rendering enabled, the GPU can provide approximately 2× speedup com-

pared to the Naïve GPU option. The speedup is the result of removing the copying of crowd data
between the CPU and the GPU through the system bus. At the higher end of workloads, it seems
that the GPU’s 4-GB memory (VRAM) limitations become a limiting factor where the crowd com-
putation must be dispatched to the GPU in multiples of 4 GB compared with the CPU’s native
access to 32-GB RAM and more through an SSD-backed virtual memory space.
Regarding scalability, across this engine’s modes, the computational costs appear negatively

linear in the log-log scale, with the caveat being that crowd counts exceeding a system’s available
memory (e.g., RAM or VRAM) would perform the force update over multiple passes and might
require PSM tiling. The artificial workloads presented of up to 10 million entities were successfully
simulated on a machine with 32 GB RAM and 4 GB VRAM (GPU memory).
The resolution of the PSM in pixels can be adjusted to reach higher performance at the cost of re-

duced fidelity. Ideally, performance would depend on the crowd count rather than PSM resolution.
We believe that the current overhead of essentially simulating empty PSM spaces can be overcome
(or hidden) by utilizing multi-threaded CPU rendering calls, as will be possible in upcoming low-
overhead graphics API standards such as Vulkan [42], the direct successor of OpenGL. For refer-
ence, ORCA could simulate 5,000 agents at 140 fps, whileWarpDriver simulated 5,000 agents in real
time (15–20 fps@ 50ms timestep) [50, 59], and ContinuumCrowds ran 10,000 agents at 50 fps [53].

6 CONCLUSION

We presented centroidal particle dynamics (CPD), an agent-based short-range collision avoid-
ance model for pedestrians in dense crowds.We showed our model’s ability to reproduce emergent
phenomena that show congruence to real pedestrian trajectory data and explained our performant
implementations for simulating high-density crowds. To further the trust in CPD for use in critical
and safety-oriented applications, the model’s parameters will require further calibration, incorpo-
rating data-validation methods to enhance trust in the CPD model.
Our explicit 2D approach to modeling personal space meant that it can be edited and modified

visually and intuitively (e.g., culling the front of a PS cone for pedestrians distracted on cellphones).
Additionally, the PSM computation allows for arbitrary shapes, affording high flexibility of scene
walls, obstacles, and barrier designs, a favorable property when simulating crowd motion in ar-
chitectural and urban design contexts. The inherent compressibility of our PS model meant that
it accommodates dense scenarios correctly as opposed to existing methods that treat PS as a rigid
1D separation distance, leading to artificial congestion and unnecessary clogging of pathways.
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While this lightweight force can produce a variety of visually convincing emergent crowd be-
havior on its own, it is equally suitable for integration with existing particle-based methods if
desired. For more serious applications that rely on data-driven calibration and rigorous accu-
racy requirements, the idea of encoding local interactions as geometric primitives requires further
study. A worthy pursuit is the geometric encoding of velocity-space collision avoidance schemes,
such as RVO optimization, which allow for calibration and the accurate reproduction of kinetic
trajectories of microscopic pedestrian interactions. The challenge in describing the RVO scheme
geometrically is in its empirically motivated assumption that collision avoidance is a shared effort
between nearby entities, thus requiring that entities know about and share information with their
nearest neighbors, something we have been actively avoiding in our performance-minded GPU
implementation. The method leads to parallel computation, opening the floor to future work that
could include detailed overhead analysis, improved calculations for large densities, and explicit
measuring of the different components used in calculating tessellation. The method does not com-
pete with traditional methods such as RVO or social forces; instead, it could be combined with
them. A classic tool can be used for path planning, long-range collision avoidance, and CPD can
be used for handling personal space forces. Our design would allow such combinations, as we deal
with local interactions.
Civil safety and threat assessment applications stand to benefit the most from dense-crowd

research. Although our method uses empirically driven parameters to produce visually convinc-
ing aggregate behavior, it cannot yet be reliably used for safety-critical applications. That would
require validation against in-lab scenarios [30, 65, 66] and statistical analysis. There are global sta-
tistical properties that can be checked (e.g., governing distributions [37, 38]) and local similarity
indices for targeted analysis of smaller areas of interest. We echo our earlier assertion that regard-
less of which method is used, crowd simulation is essentially an exercise in abstraction with no
“ground truth” to converge on, yet the increase in accuracy is a worthwhile pursuit, considering
the potential applications. A particularly challenging and motivating use case is the prevention of
crowd stampedes and crushes.
Could our proposed close-range PS model complement those methods by allowing them to have

compression of personal space? Perhaps so—that would be a useful avenue to investigate and ex-
periment with (e.g., RVO vs. RVO+CPD). This possibility of integrating CPD into existing crowd
methods was part of its design from the beginning, in which we focused our attention on ad-
dressing the close-range avoidance dynamics first, in a localized agent-based manner, and with
high-performance implementations in mind that leave room for other components of the crowd
path planning model (e.g., medium-range collision avoidance via RVO).
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